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ABSTRACT
In this contribution, we consider the Dynamic Mode Decomposition (DMD) framework as a purely data-driven tool to investigate both stan-
dard and actuated turbulent channel databases via Direct Numerical Simulation (DNS). Both databases have comparable Reynolds number
Re ≈ 3600. The actuation consists in the imposition of a streamwise-varying sinusoidal spanwise velocity at the wall, known to lead to drag
reduction. Specifically, a composite-based DMD analysis is conducted, with hybrid snapshots composed by skin friction and Reynolds stresses.
A small number of dynamic modes (∼3–9) are found to recover accurately the DNS Reynolds stresses near walls. Moreover, the DMD modes
retrieved propagate at a range of phase speeds consistent with those reported in the literature. We conclude that composite DMD is an attrac-
tive, purely data-driven tool to study turbulent flows. On the one hand, DMD is helpful to identify features associated with the drag, and on
the other hand, it reveals the changes in flow structure when actuation is imposed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5119342., s

I. INTRODUCTION

The multiscale nature of turbulence imposes a series of con-
strains on the experimental tools and/or numerical techniques
employed to describe it. Achieving a well-resolved, statistically inde-
pendent description of a turbulent flow field requires the usage of
dense grids of computational/data-acquisition points and long run-
ning times. Modern data-acquisition systems and data-processing
techniques1,2 and Direct Numerical Simulation (DNS) strategies3,4

fulfill the requirements to offer an accurate description. However,
the application of such techniques to a single flow realization results
in large amounts of data (typically, from gigabytes to terabytes, an
authentic treasure trove): performing the data analysis becomes a
challenging task.

The question that naturally arises then is, how can one identify
those pieces in this trove that are the most relevant for the description
of the physical phenomenon investigated?

Feature extraction algorithms assist in the classification of this
wealth of data resulting from experiments or DNS computations.
Perhaps the most common strategies are the Proper Orthogonal

Decomposition (POD, Refs. 5–8) and the Dynamic Mode Decom-
position (DMD, Refs. 9–11) techniques.

Other alternative feature identification strategies exist, e.g., the
Empirical Mode Decomposition (EMD), which is closely related to
the Huang-Hilbert transform.12 The EMD has been recently lever-
aged to discriminate large from small turbulent structures and char-
acterize phenomena like modulation and footprinting in channel
flows.13,14

Proper orthogonal decomposition techniques—also known as
principal component analysis or Karhunen-Loève decomposition—
operate on sequences of snapshots, i.e., either experimental measure-
ments or numerical solutions acquired at successive time instants.
An optimal representation of this sequence is provided by the POD
method, as features identified by POD are orthogonal to each other.8

Moreover, when velocity snapshots are considered, these features
can be classified in terms of decreasing energy content. These prop-
erties justify the application of POD techniques for the analysis of
turbulent flows; see, e.g., Ref. 15.

Reduced Order Models (ROMs) for turbulent flows have
been presented in the literature by combining proper orthogonal
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decomposition with the Galerkin projection; see, e.g., Refs. 16–20.
The Galerkin projection can also be combined with other bases
to build low-order models for complex flows. References 21–23
provide low-order models describing transition to turbulence for
shear flows. More recently, Ref. 24 introduced a low-order model
derived through a two-step Galerkin projection of the Navier-Stokes
equations; the resulting model reproduces the periodic generation
of streamwise vortices, which in turn are linked to the near-wall
dynamics of turbulent boundary layers.25,26

Dynamic mode decomposition techniques also operate on flow
snapshots. The structures retrieved are not orthogonal to each other
but oscillate harmonically at specific frequencies. DMD can be seen
from different, complementary perspectives,27 e.g., from that of the
Koopman analysis9,28,29 or from that of global stability analysis;10,30

DMD can also be related to discrete Fourier transform analysis31

and with spectral POD, as discussed in Refs. 32 and 33. DMD tech-
niques have been applied to many flow problems in both exper-
imental34–38 and numerical settings.9,39,40 Early DMD applications
have been focused mainly on transitional flows; recent investigations
leveraging DMD techniques for the analysis of turbulent flows are
reported in Refs. 41 and 42.

Great effort has been invested in improving and extending the
DMD techniques in Refs. 9 and 10. Recently, Le Clainche and her
collaborators43–45 introduced a high order version of the DMD
algorithm. High Order DMD has been applied to a zero net mass
flux jet38 and to build reduced order models for vertical-axis tur-
bines.46 Reference 31 describes an optimized variant of DMD which
is less sensitive to noise in the input data. Reference 47 describes a
sparsity-promoting variant of DMD, which assists in the selection
of a subset of dynamic modes retained. The non-uniform DMD
strategy of Ref. 48, standing on compressed-sensing principles, is
capable of handling snapshots sampled at varying temporal separa-
tion. It also offers the opportunity to reduce the size of the snapshots
considered by having recourse to K-means algorithms. By combin-
ing both effects, an effective reduction of the computational effort
needed to perform the DMD is achieved. Alternatively, Ref. 39 offers
a distributed-memory implementation of DMD, based upon a paral-
lelized QR decomposition. This same algorithm was later on applied
on composite snapshots—i.e., snapshots formed by considering two
or more different magnitudes (velocity components, skin friction,
and λ2 invariant)—to compute laminar-to-turbulent transition in
Ref. 40.

Whatever the specific implementation considered, the applica-
tion of POD/DMD to large turbulent databases is invariably prob-
lematic. Since the number of temporal and spatial scales involved
is large and many of them are relevant, it is never trivial how to
select a few of them that reproduce accurately enough the flow
behavior. However, the attempt of reproducing a specific feature
or functional (e.g., drag) rather than the complete system behav-
ior may ease the work at hand, as done, e.g., in aerodynamic
design.49,50

In this contribution, we consider data-driven feature detection
algorithms to analyze standard and controlled turbulent channel
flows showing broadband energy spectra. Specifically, we will apply
a dynamic mode decomposition technique to turbulent databases
generated by the DNS solver described in Ref. 51. The DMD formu-
lation we employ also provides the POD modes of the data sequence
as a by-product; see Refs. 10 and 52. This circumstance allows us to

FIG. 1. Domain and system of reference for the channel flow problem. The domain
is periodic along x and z directions; bulk flow is along x direction.

acquire further information that, though qualitative in nature, will
enrich our DMD analysis.

Encouraged by the promising results in the study of laminar-
to-turbulent transition in Ref. 40 and supported on the Fukagata-
Iwamoto-Kasagi (FIK)53 identity, we have attempted to obtain
richer information by conducting the POD/DMD analyses on tem-
poral sequences of composite snapshots formed by concatenating
Reynolds stresses and wall skin friction. As we shall discuss in Secs. II
and III, by using a composite DMD approach, it becomes possi-
ble to establish an informed classification of the DMD modes. This
classification ultimately allows us to identify a few modes that recon-
struct accurately the Reynolds stress distribution responsible of drag
generation.

The composite DMD analysis is applied to both standard and
actuated channel flows. The actuation considered is the imposition
of a spanwise wall velocity that varies sinusoidally with the stream-
wise coordinate, wwall ∝ sin(2 πx

/λx), which is known to lead to
drag reduction.54 See Fig. 1 for the system of reference employed
throughout this work.

The long term goal is to reveal whether flow features linked to
drag reduction exist and—if that is the case—learn how those struc-
tures could be modified to better understand the efficiency of drag
reduction strategies.

This contribution is organized as follows: Section II describes
the DNS solver employed to generate the turbulent databases and the
specific implementations of POD/DMD strategies applied to ana-
lyze them. Section III discusses the results obtained. Finally, Sec. IV
presents the conclusions of our work.

II. NUMERICAL METHODOLOGY
A. Databases description

Feature detection algorithms have been applied to two tur-
bulent channel flows databases generated by the incompressible
DNS solver described in Ref. 51. The code follows the paradigm
introduced in Ref. 55: it solves for the wall-normal compo-
nents of velocity v and vorticity η. This quantities are Fourier-
transformed (dealiased using the 3/2 rule) along the homogeneous
directions and discretized using explicit compact finite-differences
along the wall normal direction. Both the streamwise u and span-
wise w velocity components are retrieved using the continuity
equation with the relation η = ∂w

∂x −
∂u
∂z . Time integration is

accomplished by an explicit third order, low-storage Runge–Kutta
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method, combined with an implicit second-order Crank–Nicolson
scheme.

In both the standard and actuated cases considered, the chan-
nel walls are planar and the simulations have been conducted
under the assumption of constant mass flux. The difference in the
databases is the wall boundary condition: in the reference case, the
classical no-slip boundary condition has been enforced, whereas
in the actuated configuration, a streamwise variation of the span-
wise velocity component wwall is assumed, namely, wwall = W0
sin(2 πx

/λx).
This steady actuation strategy has been investigated in Ref. 54,

whereas related purely temporal and spatiotemporal strategies have
been considered in Ref. 56 and in Ref. 57, respectively. Reference 58
deals with a related but passive-in-nature drag reduction technique.
In every case, the mechanism at play is related to that acting in
the temporally oscillating case:57,59 provided that the amplitude and
wavenumber (and angular pulsation, if applicable) are adequately
chosen, the modification induced in the flow field along the transver-
sal direction weakens the viscous near-wall cycle, thus resulting in
drag reduction.

The spatial resolution for the standard channel flow is Δx+

= 6.54 and Δz+ = 3.27 along the homogeneous directions and Δ y+

∈ (0.95, 5.18); the figures for the actuated flow are Δx+ = 4.76, Δz+

= 2.38, and Δ y+ ∈ (0.69, 3.76); the time step enforced in the simula-
tion is in both cases Δt = 0.0122, which corresponds to Δt+ ≈ 0.1 for
the standard case and to Δt+ ≈ 0.05 for the actuated case.

Generating the standard turbulent channel database took ≈46 h
on a single core Intel(R) Xeon(R) CPU E5620 at 2.40 GHz with
24 GB of RAM. The previous solution was used as initial condition
to generate the actuated channel database; the computation was run
for ≈55 h to shed the transient stage. The code was then run for an
additional ≈27 h, over which the snapshots for the actuated case were
finally stored.

Table I summarizes the characteristics of both databases. Note
how the actuation strategy is effective in providing drag reduction,
as Reτ ≈ 200 for the standard channel, whereas Reτ ≈ 145 is observed
for the actuated channel flow.54

B. Feature detection algorithms: POD and DMD
We present here a brief summary of the DMD technique, as

proposed in Ref. 10. Given a sequence of instantaneous flow fields
numbered from 1 to ns (e.g., taking one or all recorded variables),

the following data matrix can be constructed:

Vns
1 = {v(t1), v(t2), . . . , v(tns)}, (1)

where the subindex and superindex identify, respectively, the first
and last time instants of the sequence. The data is ordered in time
and separated by a constant sampling time interval Δts such that tj+1
= tj + Δts for all j = 1, . . ., ns − 1. In the case of linear stability analysis
and within the exponential growth region, it is possible to define a
linear operator A (i.e., a numerical approximation of the linearized
Navier–Stokes operator) such that v(tj+1) = Av(tj). For nonlinear
systems, A represents the Koopman operator. Equation (1) can then
be rewritten as a Krylov sequence (see Ref. 60),

Vns
1 = {v(t1),Av(t1), . . . ,Ans−1v(t1)}. (2)

For an ordered sequence, Eq. (2) can be equated to Eq. (1),

A{v(t1), v(t2), . . . , v(tns−1)} = {v(t2), v(t3), . . . , v(tns)}, (3)

which can alternatively be written in matrix form as

AVns−1
1 = Vns

2 . (4)

Next, the Singular Value Decomposition (SVD) of the matrix
Vns−1

1 = UΣWH is obtained; the superscript H denotes conjugate
transposition. Matrix Σ is a diagonal matrix with entries σi the sin-
gular values. The left singular vectors—the columns of U—can be
related to the POD modes of the input data sequence:52 the DMD
algorithm of Schmid10 offers the POD modes as a by-product.

The SVD of the snapshot matrix is then inserted into Eq. (4),
which yields AUΣWH = Vns

2 . The reduced matrix Ã = UHAU asso-
ciated with the initial system described by A, can be rewritten using
the former equality as

Ã = UHAU = UHVns
2 WΣ−1. (5)

The reduced matrix Ã is the projection of the matrix A onto the
space contained in U, and previously obtained through the SVD
operation.10 The DMD operates under the assumption that the
projected matrix Ã conveys most of the information codified into
operator A.

Once the reduced matrix Ã has been calculated, the reduced
DMD modes yi can be obtained, as well as the associated eigenval-
ues μi [i.e., growth rates R(μi) and frequencies I(μi)mapped to the
unit circle] of the reduced system by solving the eigenvalue problem

TABLE I. Databases description.

Lx/δ Ly/δ Lz/δ nx ny nz Rec uc W0/uc λx/Lx uτ

Reference 3678.7 0.7733 . . . . . . 0.041 98
2π 2 π 192 129 192

Actuated 3721.0 0.7824 0.5 1/2 0.030 77

Forcing Snapshots stored ns Δts Memory (GB) Time (h)

Reference ≈46
Constant flow rate 2049 0.122 380

Actuated ≈27 (+55)
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Ãyi = μiyi. The approximated eigenmodes of the matrix A can then
be recovered via a projection onto the original space, using relation
ϕi =Uyi. Eventually, the growth rates and frequencies in the complex
half-plane can be recovered from the eigenvalues as λi = log(μi)/Δts

(do not mistake the ith eigenvalue λi with the λ2 invariant).
Finally, note that the DMD decomposition allows us to recon-

struct the original data sequence as

v(t) =
ns−1

∑
i=1

αi ϕieλi t . (6)

In this contribution, the amplitudes αi are computed following the
formulation in Ref. 47. That is, the αi’s stem from the minimization
problem in the Fröbenius norm:

min
αi
∥Vns−1

1 −ΦDαT∥
2
F , (7)

where the columns in matrix Φ are the dynamic modes ϕi, diagonal
matrix Dα contains the unknown amplitudes αi, and T is a Van-
dermonde matrix whose columns are generated by the successive
powers of the column vector [μk

1, . . . ,μk
ns−1]

T
, with k = 0, . . ., ns − 1.

Since matrix U is unitary, it does not affect the norm in Eq. (7), and
the optimization problem actually solved is

min
αi
∥ΣWH − YDαT∥

2
F , (8)

with the columns in matrix Y the eigenvectors yi of matrix Ã.

C. POD/DMD analysis of the turbulent databases
The DNS solver provides the flow state at everyΔts time instant.

These flow states consist of the complete velocity field and the skin
friction at the wall.

In this work, we have considered two main types of DMD anal-
yses: classical DMD analysis—performed on snapshots of instan-
taneous Reynolds stress distribution, u′v′(x⃗, tj)—and composite
DMD analysis performed on snapshots obtained by concatenat-
ing instantaneous skin friction at the wall Cf (tj) and Reynolds
stress u′v′(x⃗, tj). The Appendix describes DMD analyses based on
other magnitudes. The rationale behind this choice is supported
on the link existing between both magnitudes, as the FIK identity
confirms53

Cf =
12
Reb
±

Laminar

+ 12∫
1

0
2 (1 − y)⟨−u′ v′⟩d y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Turbulent

. (9)

In the equation above, operator ⟨○⟩ represents the temporal and spa-
tial (along the homogeneous directions x and z) averaging, and u′

and v′ are the fluctuations around the statistically stationary profiles
⟨U⟩(y) and ⟨V⟩(y) = 0.

Observe how, in accordance to factor 1 − y in the integrand
of the turbulent contribution, the closer to the wall, the larger the
contribution of the Reynolds stresses to the skin friction is. We will
come back to this fact in Sec. III.

Finally, note the upper limit in expansion Eq. (6): if this
expansion is truncated—i.e., if a smaller number nr < ns − 1 is
considered—a reduced order model for the process is obtained.
Different criteria exist to discriminate which dynamic modes are

to be retained into the expansion in Eq. (6), e.g., the cardinality-
penalization-based criterion introduced in Ref. 47 or the one
retaining modes with significative time-integrated contributions in
Ref. 61.

In this work, we have considered instead two different and very
simple criteria. The first criterion consists in retaining only those
modes fulfilling ∣αi ∣

∣αmax ∣
≥ 10%, where the αi’s are the amplitudes in

Eq. (6). The second criterion retains in the expansion those modes
that contribute most to the skin friction at the wall. This can be
accomplished by defining the quantities βi ≡ (ϕi ⋅ eCf )αi. If eCf is
the unit vector along the component of the skin friction, then factor
(ϕi ⋅eCf ) extracts the Cf -related component from the dynamic mode
ϕi obtained in a composite DMD analysis. This second criterion,
which we term weighted, exploits the correlation between Reynolds
stresses and skin friction. As we shall see in Sec. III C, retaining those
modes with ∣βi ∣

∣βmax ∣
≥ 10% allows us to recover with sufficient accuracy

the Reynolds stresses distribution for nr ≪ ns.
Finally, whatever the upper limit nr taken in expansion Eq. (6)

is, note that the Reynolds stress profile extracted from the DMD
analysis is obtained as

⟨u′v′⟩DMD(y) = 1
nsΔ ts

nr

∑
i=1

αi⟨ϕi − (ϕi ⋅ eCf )eCf ⟩∫
nsΔ ts

0
eλitd t. (10)

It is those profiles which, in Sec. III, will be compared against those
retrieved directly from the DNS simulation.

III. RESULTS AND DISCUSSION
In this section, we first assess the adequacy of the turbulent

database definition and identify a subset of temporal snapshots that
represents accurately the turbulent flow phenomena at the Reynolds

FIG. 2. Standard turbulent channel flow, Reτ = 200, and rms of the fluctuations of
velocity components. Present DNS results on 2π × 2 × π domain (urms, —○—;
vrms, —◊—; and wrms, —◽—) vs DNS results on 4π × 2 × 2π domain from
Ref. 62 (red, dashed lines).
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FIG. 3. Standard channel: data
sequence sensitivity to length ns and
spatial decimation sx , sz along the
homogeneous directions: case ns

= 1025, sx = sz = 1 (—⧫—); case ns =
1025, sx = sz = 2 (—●—); case ns = 897,
sx = sz = 1 (—▲—); and case ns = 897,
sx = sz = 2 (—▼—). DNS quantities on
2π × 2 × π domain (——) are included
for comparison. (a) u′+rms, (b) v′+rms,
(c) w′+rms, and (d), ⟨u′+v′+⟩.

FIG. 4. Actuated channel: data sequence
sensitivity to length ns and spatial dec-
imation sx , sz along the homogeneous
directions: case ns = 1025, sx = sz = 1
(—⧫—); case ns = 1025, sx = sz = 2
(—●—); case ns = 897, sx = sz = 1
(—▲—) and case ns = 897, sx = sz =
2 (—▼—). DNS quantities on 2π × 2
× π domain (——) are included for com-
parison. (a) u′+rms, (b) v′+rms, (c) w′+rms, and
(d) ⟨u′+v′+⟩.
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FIG. 5. POD singular values for standard
(a) and actuated channel (b): sensitivity
to y+

max .

stress level (Sec. III A). Next, in Sec. III B, we present the results
obtained from the POD analysis of the databases. Finally, we discuss
the DMD analysis in Sec. III C.

A. Data sequence definition and verification
First, we compare the solution obtained by running the DNS

code (on the standard or unactuated case) against the results
reported in Ref. 62. The comparison is shown in Fig. 2. Note that
both the x and z extents of the computational domain considered in
this work are one half shorter that those of the domain considered
in Ref. 62; this fact can account for the slight differences appreciable
in Fig. 2.

The second matter of concern is related to the fact that achiev-
ing a statistically converged representation of turbulent processes
requires averaging on large domains and over long times. How-
ever, the feasibility of the QR/SVD decomposition step hinges on
the memory available: considering very large domains and/or very
long time sequences becomes increasingly costly. The question that
naturally arises then is whether the spatial resolution of the snap-
shots considered and the time span covered by those snapshots is
adequate to describe properly the turbulent physical processes we
are attempting to analyze.

We address this question in Fig. 3, which shows the second-
order moments obtained from shorter snapshot subsequences (ns
= 897 and 1025) applying (or not) spatial decimation along the
homogeneous directions x and z, i.e., retaining every other point
(indicated as sx = sz = 2). As visible in Fig. 3, considering spatially
decimated snapshots does not impact second-order quantities. Con-
sidering shorter sequences does have an effect, albeit very small.
Therefore, the data sequence considered in the rest of this work is
the one consisting of the first ns = 1025 snapshots, each of them spa-
tially decimated along both x and z directions (sx = sz = 2). Invoking
vertical symmetry, one can also consider a half of the domain. In this
manner, the data to be processed by POD/DMD is reduced from the
original 2049 snapshots of nx × ny × nz ≈ 4.76 × 106 points to 1025
snapshots of size nx

sx
× (floor( ny

2 ) + 1) × nz
sz
≈ 5.99 × 105.

Figure 4 describes a similar analysis for the actuated tur-
bulent database; the same observations as for the standard case
apply. The data sequence considered is, accordingly, that one
formed by the first ns = 1025 snapshots spatially decimated along
both x and z directions, sx = sz = 2 and considering vertical
symmetry.

As argued above, we have conducted POD/DMD analyses on
either the standard or the actuated turbulent channel flow databases
considering temporal sequences of ns = 1025 half snapshots, where

FIG. 6. POD modes from analysis on 2π
× 1 × π domain with sx = sz = 2, for stan-
dard (a) and actuated channel (b). Iso-
surfaces have been traced at multiples
of u2

τ , where uτ = 0.041 98 for the stan-
dard and uτ = 0.030 77 for the actuated
channel. The values given in between
parentheses specify the aforementioned
multiples.
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FIG. 7. POD modes for standard [(a) and (c)] and actuated channel [(b) and (d)] for y+
max = 50 (with sx = sz = 2). Isosurfaces have been traced at multiples of u2

τ , where uτ =
0.041 98 for the standard and uτ = 0.030 77 for the actuated channel. The values given in between parentheses specify the aforementioned multiples.

FIG. 8. Standard channel DMD spectra
obtained from analysis based on u′v′

and composite Cf -u′v′ snapshots: (a) μ-
plane representation with locus ∣μ∣ = 1
in dashed line, and (b) amplitude ∣αi∣ vs
angular pulsation I(λi).
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FIG. 9. Standard channel DMD spectra obtained from analysis based on u′v′ and
composite Cf -u′v′ snapshots: amplitudes ∣αi∣/∣αmax ∣ and ∣βi∣/∣βmax ∣ vs angular
pulsation I(λi).

half refers to the region given by y
/h ∈ [−1, 0]. For reasons to be

discussed when describing Fig. 10, we have considered as well the
sequences of snapshots in the range y+ ∈ [0, y+

max] for y+
max = 35,

40, 45, 50.

B. POD analysis
Figure 5 shows the y+

max-sensitivity of the cumulative energy
associated with the POD decomposition for both the standard
[Fig. 5(a)] and the actuated [Fig. 5(b)] channel databases.

Observe how, in both cases, the energy distribution grows in
a progressive fashion. Recall that the POD analysis provides ns − 1
components ordered by decreasing energy content. At the sight of
Fig. 5, a distinct mode-index beyond which the supplementary
energy contribution is marginal is not apparent. In other words,
retrieving a large part of the energy requires most of the POD modes;

this is consistent with the broadband character of turbulent flows.
This effect can be explained on the account that the smooth energy
distribution is consistent with the multiscale nature of the turbu-
lent channel flow: in a turbulent flows, all the scales contribute with
energy.63

Besides, recall that the POD decomposition used here deter-
mines structures that are orthogonal only in space but not necessar-
ily in time.32

Note also the difference in the cumulative energy progression
between the y+

max = 200 case (the half-channel) and the y+
max ≤ 50

analyses. The latter cases are nearly indistinguishable from each
other and are distinctly different from the half channel analysis. This
suggests that near the wall (i.e., in the inner-layer), the energy is con-
centrated in fewer modes. We come back to this phenomenon in
Sec. III C, when discussing the DMD analysis.

Despite the limitations so far described, the POD analysis is
still useful to visualize relevant features of the flow field; see Fig. 6
for POD modes for y+

max = 200. Figure 7 shows the two first POD
modes for both the standard [Figs. 7(a) and 7(c)] and the actuated
[Figs. 7(b) and 7(d)] channel flows for y+

max = 50. Note specially
the dramatic difference between Figs. 7(a) and 7(b); the effect of the
actuation is clearly visible in the neighborhood of the wall.

In conclusion, despite its limitations, the POD information
obtained as a by-product of the DMD analysis is nevertheless useful
to gain insight into a turbulent flow.

C. DMD analysis
Figure 8 compares spectra from both classical (i.e., based on

simple u′v′ snapshots) and composite (using Cf -u′v′ snapshots)
DMD analysis for the unactuated channel flow (the same conclu-
sions are obtained for the actuated case). Both analysis retrieve
exactly the same modes μi; see Fig. 8(a). The majority of those modes
lie near the locus ∣μ∣ = 1, which is in accordance with the statisti-
cally stationary nature of the flow.41 The ∣α∣ vs I(λ) plot in Fig. 8(b)
shows that also the same amplifications αi are obtained through the
classical and the composite DMD analysis. Observe also how most of
the modes associated with large ∣αi∣’s are distributed over the whole
range of pulsation frequencies.

According to Fig. 8, classical and composite DMD offer nearly
indistinguishable results. It is reasonable to ask then whether
composite DMD brings forward any benefit over classical DMD.

FIG. 10. DMD-based reconstruction of
Reynolds stresses for standard (a) and
actuated (b) channels, using modes
associated with ∣β∣/∣βmax ∣ > 10%. Color
bar on the right indicates the number
of modes considered in the expansion
Eq. (10). DNS quantities on 2π × 2 × π
domain (——) are included for compari-
son.

Phys. Fluids 31, 115102 (2019); doi: 10.1063/1.5119342 31, 115102-8

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 11. DMD spectra for standard (a)
and actuated channels (b): sensitivity to
y+. Only those retained for the recon-
struction of ⟨u′v′⟩ [see Eq. (6)] are
shown.

Note however that composite DMD provides additional flexibility
with respect to classical DMD: composite DMD allows, for exam-
ple, to classify dynamic modes according to the βi factors intro-
duced in Sec. II C. The physical link between the friction at the wall
and Reynolds stresses [recall Eq. (9)] is thus folded into the purely
data-based DMD technique.

Previous discussion is illustrated by Fig. 9, which compares
classical and weighted composite spectra. First, the most relevant

mode appears at I(λ) = 0 (i.e., it is a steady mode) in the weighted
composite DMD analysis, whereas for the standard analysis, this
mode appears at I(λ) ≈ ±7. Observe also how the weighted
composite spectrum presents a segregation of modes in large and
small contributions much more distinct than the standard DMD
spectrum. This implies that by choosing a fixed nr < ns – 1, a
better description of the skin friction and the Reynolds stresses
is obtained with weighted composite than with classical DMD.

FIG. 12. DMD-based reconstruction of
Reynolds stresses for standard channel:
y+-sensitivity. Color bar on the right indi-
cates the number of modes considered
in the expansion Eq. (10). DNS quanti-
ties on 2π × 2 × π domain (——) are
included for comparison.
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FIG. 13. DMD-based reconstruction of
Reynolds stresses for standard channel:
y+-sensitivity. Color bar on the right indi-
cates the number of modes considered
in the expansion Eq. (10). DNS quanti-
ties on 2π × 2 × π domain (——) are
included for comparison.

Hence, from here on, we describe only weighted composite DMD
analyses.

Figure 10 shows, for both the standard and the actuated chan-
nels, the Reynolds stress corresponding to the reconstruction given
by Eq. (6) using a progressively increasing number of retained terms
nr . The reconstruction with the mode with largest ∣βi∣ matches well
the Reynolds stress distribution in the range y+ ∈ [0, 100].

This behavior can be explained from the viewpoint of Eq. (7).
Expansion coefficients αi’s are computed through a minimization
procedure that guarantees that if nr = ns − 1, the original data
sequence is recovered. However, a truncated DMD expansion, i.e.,
one with nr < ns − 1, contrarily to a POD-based expansion, is not
necessarily optimal.

The fact that turbulence is an involved multiscale phenomenon
complicates further the situation: since there are many relevant fea-
tures in the flow, it becomes increasingly difficult to represent with a
few modes the rich physics of the problem.

Figure 11 shows, for both the standard and the actuated chan-
nel flows, the sensitivity of the spectra to the y+

max value consid-
ered. Spectra for y+

max ≤ 50 include only those modes that fulfill
∣βi ∣

∣βmax ∣
≥ 10%, whereas for the y+

max = 200 case, the 31 first modes
are presented for reference purposes.

The observation above is confirmed by the differences shown
by the standard and the actuated flow decompositions. Indeed, one
observes from Fig. 11 that less modes with βi

βmax
≥ 10% are found for

the actuated than the standard channel. Moreover, note how for the
standard channel flow the mean contribution is split up in to three

steady modes (see also Fig. 12). This behavior has been described as
well in Ref. 43. In the actuated case, a single steady mode is recovered
by DMD.

The comparison of Figs. 12 and 13 and Table II confirm this
account: i.e., for y+

max = 50, it is possible to retrieve the correct
Reynolds stress distribution; moreover, it is easier to do so for the
actuated than for the standard case. However, what would be the
reason behind the different behavior of the DMD analysis for the
standard and the actuated channels? Since DMD is a data-based fea-
ture detection technique, it knows nothing about the physics of the
problem. The actuation at the wall introduces a very distinct feature
in the flow field; this feature is easily singled out by the optimizer: in
a sense, a larger fraction of the physics can be described with a small
number of modes.

TABLE II. Error in the reconstruction using Eq. (6).

Standard Actuated

y+
max L2 error nr L2 error nr

200 0.256 5 0.116 3
50 0.179 9 0.068 6
45 0.158 15 0.031 3
40 0.076 13 0.126 1
35 0.055 9 0.129 3
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FIG. 14. Streamwise spectra of DMD
modes for standard (a) and actuated
channels (b) for y+

max = 50.

In view of the previous argumentation, the relevance of the y+-
sensitivity is understandable: since the near-wall turbulence cycle is
sustained even when outer flow turbulent activity is suppressed,64 by
confining the POD/DMD analyses to the near-wall region of the flow
field, we are again easing the work of the optimizer. This observation
is also in accordance with the 1 − y term in the FIK relation; see
Eq. (9).

Finally, as described in Ref. 41, it is possible to identify a stream-
wise propagation speed c+

x for each of the dynamic modes. Casinelli
et al.41 took advantage of their DMD analyses being performed
at specific wavenumber pairs (κx, κz) to compute the streamwise
propagation speed c+

x of the i-th mode as

c+ = I(λi)
κx,i

. (11)

The dynamic modes in our analysis contain, contrarily to those in
Ref. 41, the complete range of spatial wavenumbers. It is nevertheless
possible to identify the most relevant streamwise wavenumber by
inspecting the spatial Fourier transformation of each of the modes;
see Fig. 14.

The most relevant unsteady dynamic mode for the standard
channel flow propagates at c+

x = 10.62 (using κx that provides the
maximum PSD), which is very close to the value c+

x ≈ 10 reported
in Ref. 65. A value of c+

x = 4.82 is obtained for the actuated case.
The values retrieved are robust against variations in y+. Moreover,
these specific values surface again if a DMD analysis is performed
on composite snapshots of Cf and u′.

Finally, let us comment on the computational cost of perform-
ing the composite DMD analysis. Table III summarizes the time—in

TABLE III. Time—in seconds—invested in the different phases of the DMD
analysis39 for y+

max = 200 case on 48 processors.

Standard % Actuated %

Reading 5531.52 84.90 5487.01 84.69
QR 795.23 12.21 809.98 12.50
SVD 50.11 0.769 48.95 0.750
EIG 138.81 2.13 133.22 2.06

Total 6514.97 100 6479.16 100

seconds—invested in the different steps necessary to perform the
composite DMD analysis (see Ref. 39) in the y+

max = 200 case. Note
how the most expensive operation is actually loading the database
in memory. The next most computationally intensive task is the
precursor QR decomposition of the database. The singular value
decomposition that provides U, Σ, and W and the eigendecompo-
sition that offers the Ritz values and the dynamic modes are com-
paratively much faster. To conclude, observe how there is barely any
difference in the time necessary to analyze either the standard or the
actuated databases.

IV. CONCLUSIONS
In this contribution, we have presented a strategy to per-

form data-driven analyses of turbulent channel flow configurations.
Specifically, two turbulent channel flow databases at comparable Rec
have been considered. One of them consists of a standard config-
uration at Reτ = 200, whereas the second one experiences an actu-
ation via the imposition of a streamwise-varying sinusoidal span-
wise velocity at the wall. The actuated configuration presents a drag
reduction since a diminished Reτ ≈ 145 is calculated.

We have conducted composite-based POD/DMD analyses, that
is, sequences of snapshots formed by skin friction Cf (tk) and
Reynolds stresses u′v′(x⃗, tk) have been considered. The relevance
of the variable choice to assemble the composite snapshots can be
justified from the Fukagata-Iwamoto-Kasagi identity.53

Either of the databases amounts to slightly less than 400 GB.
Since both POD and DMD hinge around a precursor QR decom-
position of the snapshots matrix, our first step has been to investi-
gate under which conditions it is possible to retrieve averaged and
second-order quantities from reduced views of the database that
match closely enough the DNS results. Both reductions in the spatial
resolution (spatial decimation, considering half channel) and in the
temporal extent have been considered.

Next, a POD-based analysis of both databases has been per-
formed. Contrarily to the initial expectations, the energy distribu-
tion grows in a progressive fashion: we have not found a distinct
mode-index beyond which supplementary energy contributions are
marginal. As POD information is obtained as a by-product of the
DMD analysis, POD allows us nevertheless to gain insight into
the differences between the standard and the actuated turbulent
channels.
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As for the composite DMD analyses and by establishing a link
between the Cf and the u′v′-related components of the dynamic
modes retrieved, we have been able to identify a small number nr of
dynamic modes—with nr/ns ∼ O(10−2)—that allow to reconstruct
the Reynolds stresses of the original data sequence. These modes
propagate at a range of phase speeds consistent with those originally
identified in Refs. 57 and 65 and later retrieved by Casinelli et al.41

In summary, in this contribution, we have proposed an avenue
to study large turbulent databases through the composite DMD
technique. In this work, we have focused on snapshot sequences
of Reynolds stresses and skin friction; perhaps other combination
of variables provide more accurate or complementary information.
This is an avenue to be explored in subsequent work.
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APPENDIX: SUPPLEMENTARY CLASSICAL AND
COMPOSITE DMD ANALYSES ON u ′v ′, u ′ AND λ2
MAGNITUDES

In this appendix, we comment further on the differences
observed when performing composite over classical DMD. We
illustrate those differences on two auxiliary flow databases. These
databases replicate those described in Sec. II A but are computed on
a π × 2 × π

/2 domain. The specifications are gathered in Table IV.
Despite the smaller domain considered for computational conve-
nience, the conclusions attained extend to the larger database.

We have considered a first analysis on the standard turbulent
channel auxiliary flow database. Figure 15 shows the reconstructed
Reynolds stress profile ⟨u′v′⟩DMD(y) computed with Eq. (10). The
classical DMD analysis based on u′v′(x⃗, tk) snapshots results appear
in Fig. 15(a). The profile shown is obtained by superposing modes
with ∣αi∣ > 10% (nr = 24): the associated Reynolds stress pro-
file does not reconstruct the DNS computed quantities. However,
if a composite DMD analysis based on hybrid u′v′(x⃗, tk)-Cf (tk)
snapshots is considered, the superposition of the nr = 6 modes
with ∣βi∣ > 10% leads to a good approximation of the profile;
see Fig. 15(b).

Composite DMD analyses can be performed on snapshots
assembled with other quantities as well. Figure 16 presents the
results of an analysis performed on snapshots formed by λ2(x⃗, tk)
fields and Cf (tk). When comparing Figs. 16(a) and 16(b), we observe
that the superposition of modes associated with largest ∣βi∣ pro-
vides a flow field characteristic of the near wall region, whereas the
superposition of modes associated with largest ∣αi∣ does not.

TABLE IV. Auxiliary databases description.

Lx/δ Ly/δ Lz/δ nx ny nz Rec uc W0/uc λx/Lx uτ

Standard 3678.7 0.7699 . . . . . . 0.042 33
π 2 π

/2 96 101 96
Actuated 3732.7 0.7812 0.5 1 0.031 36

Forcing Snapshots stored ns Δts Memory (GB)

Constant flow rate 1200 0.156 25 32

FIG. 15. DMD analysis of auxiliary tur-
bulent channel flow database at Reτ =
200, using u′v′(x⃗, tk) snapshots, in (a),
and composite u′v′(x⃗, tk)-Cf (tk ) snap-
shots, in (b). Reconstruction of Reynolds
stresses with expansion Eq. (10). Color
bar on the right indicates the number of
modes nr retained. DNS quantities on
π × 2 × π

/2 domain (——) are included
for comparison.
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FIG. 16. DMD analysis of auxiliary turbulent channel flow database at Reτ =
200, using λ2(x⃗, tk) snapshots, in Fig. (a), and composite λ2(x⃗, tk)-Cf (tk ) snap-
shots, in (b). Reconstructed flow field using Eq. (6), averaged over time and the
x-direction.

Another composite DMD analysis has been performed, this
time considering snapshots assembled by u′(x⃗, tk) and Cf (tk); see
Figs. 17–19.

A note on the u′-based DMD analysis: as discussed in—
among others-,41,66 the cyclic regeneration process of near wall struc-
tures involves a unstable phase of streak break down. The DMD

algorithm captures this behavior (see also Ref. 41), and accord-
ingly, there are eigenvalues λi with a positive real part; see
Fig. 17.

The results obtained for the standard channel flow analysis
appear in Fig. 18. Specifically, the reconstructed field averaged along
time and the x-direction shown in Fig. 18(a) suggests the presence
of streamwise vortices. The characteristic spanwise spacing is about
100 plus units. Figure 18(b) shows the instantaneous reconstructed
flow [using nr = 5 in Eq. (6)]. Here again, the characteristic span-
wise spacing is around 100 plus units and streak-like features are
appreciable (Refs. 25, 41, and 55).

The same analysis has been performed for the auxiliary actu-
ated database. The results from this analysis appear in Fig. 19.
Compare Fig. 19(b) against Fig. 18(b): observe how the bound-
ary between alternated low and high speed regions is less pro-
nounced, which is consistent with the reduced Reτ of the actuated
flow.

In conclusion, composite DMD analysis offers enhanced capa-
bilities with respect to classical DMD. As we have shown, using
hybrid snapshots combining Cf (tk) and other flow field [be it
u′(x⃗, tk), u′v′(x⃗, tk), or λ2(x⃗, tk)] allows us to establish an informed
classification of the DMD modes. This classification ultimately

FIG. 17. Composite DMD analysis of
the auxiliary channel flow databases,
using composite u′(x⃗, tk)-Cf (tk ) snap-
shots. Spectra, in (a), for standard and
for actuated case, in (b).

FIG. 18. Composite DMD analysis of the standard channel flow database, using composite u′(x⃗, tk)-Cf (tk ) snapshots. Reconstructed flow field using Eq. (6), with nr = 5.
(a) Flow averaged over time and the x-direction; (b) instantaneous field at y+

≈ 15. Fields nondimensionalized by uτ = 0.042 33.
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FIG. 19. Composite DMD analysis of the standard channel flow database, using composite u′(x⃗, tk)-Cf (tk ) snapshots. Reconstructed flow field using Eq. (6), with nr = 3.
(a) Flow averaged over time and the x-direction; (b) instantaneous field at y+

≈ 15. Fields nondimensionalized by uτ = 0.031 36.

allows us to identify a few modes that replicate relevant features of
the physical underlying process.
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