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A novel Dynamic Mode Decomposition (DMD) technique capable of handling non–
uniformly sampled data is proposed. As it is usual in DMD analysis, a linear relationship 
between consecutive snapshots is made. The performance of the new method, which we 
term θ-DMD, is assessed on three different, increasingly complex datasets: a synthetic flow 
field, a ReD = 60 flow around a cylinder cross section, and a Reτ = 200 turbulent channel 
flow. For the three datasets considered, whenever the dataset is uniformly sampled, the 
θ-DMD method provides comparable results to the original DMD method. Additionally, the 
θ-DMD is still capable of recovering relevant flow features from non–uniformly sampled 
databases, whereas DMD cannot. The proposed tool opens the way to conduct DMD
analyses for non–uniformly sampled data, and can be useful e.g., when confronted with 
experimental datasets with missing data, or when facing numerical datasets generated using 
adaptive time-integration schemes.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Over the last twenty years, and in whatever the area of technological interest, there has been a massive increase in the 
quality and volume of data available. The field of fluid dynamics is not an exception to this trend: both the accurate numer-
ical computations performed on high–performance computing facilities (e.g. Direct Numerical Simulation) and experimental 
campaigns leveraging multiple sensors with fast sampling data-acquisition systems make the collection of large datasets a 
trivial task.

The surge in data availability is certainly welcome, though it also comes hand in hand with its own associated challenges, 
e.g. the data processing becomes more computing intensive, and discerning the traces of the physical phenomena of interest 
from irrelevant features can be difficult.

The fluid dynamics community has not been idle in the face of these challenges. On the contrary, a plethora of methods 
capable of obtaining information from flow data (e.g. data-driven) has been developed, thoroughly tested and assessed over 
the last years.

The most prevalent data–driven flow analysis strategy is perhaps the Proper Orthogonal Decomposition (POD, [1–4]) 
and derivations. This family of methods –sometimes also referred to as Principal Component Analysis or Karhunen-Loève 
decomposition– operate on sequences of snapshots, that is, either experimental measurements or numerical solutions ac-
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quired at successive time instants. An optimal representation of the sequence is provided by the POD, as features identified 
by POD are orthogonal to each other [4]. Recently, techniques to perform Spectral POD have been described in Refer-
ences [5–7]. Randomized [8] and multi–resolution [9] implementations of PODare also available.

An alternative, more recent family of strategies builds on the Dynamic Mode Decomposition (DMD) method [10,11]. DMD
techniques, when applied on flow snapshot sequences provide structures that are not orthogonal to each other, but which 
oscillate harmonically at specific frequencies. DMD can be regarded from a number of complementary perspectives [12]: 
e.g., from that of the Koopman analysis [10,13], or from that of global stability analysis [11,14]; DMD can also be connected 
to Discrete Fourier Transform analysis [15] and with Spectral POD, as discussed in [6]; and with Resolvent Analysis [16,
17]. Randomized variants of DMD are presented in [8,18,19]. DMD techniques have been applied to a wide array of flow 
problems, both in numerical [10,20,21] and experimental [22–27] settings. Though early DMD applications focused mostly 
on transitional flows; recent investigations addressing the DMD analysis of turbulent flows are reported in [28–31].

From the previous discussion, both POD and DMD methods can be considered firmly established data analysis tools, as 
the number of available monographs [1,4,12,32,33] and reviews [14,34–37] confirm.

One common trait shared by nearly of the methods so far considered is the prerequisite of a uniformly sampled temporal 
sequence. However, one might be confronted with data sequences that are not uniformly sampled, (i.e., datasets where 
subsequent snapshots are not uniformly equiseparated in time). Such situations arise, e.g., whenever a numerical dataset 
has been generated using adaptive time-integration schemes, or when faced with gappy experimental measurements.

Such non-uniformly sampled datasets have been addressed already by Guéniat and collaborators in [38], through the 
Non–Uniform DMD (or NU-DMD) method. The NU-DMD method accomplishes the DMD factorization of not temporally 
equiseparated data sequences by posing an optimization problem that resorts to the Nelder–Mead minimization algorithm. 
More recently, and on a related note, Le Clainche and her collaborators assess the sensitivity to sampling time of the HODMD
method [31].

In this contribution we propose a derived DMD method to address non–uniformly sampled datasets. This method, a 
derivation from [39], has two differences with most of the established DMD methods: first, the linear relationship between 
consecutive snapshots is made on the numerically discretized counterpart of a linearized state-equation; and second, a 
dimensionally–reduced view of the state data is considered. The performance of the new method, which we call θ -DMD for 
reasons to be discussed in section 2, is assessed on three different, increasingly complex datasets: a synthetic flow field, a 
ReD = 60 flow around a cylinder cross section, and a Reτ = 200 turbulent channel flow. For the three datasets considered, 
we demonstrate that whenever the dataset is uniformly sampled, the θ -DMD method provides comparable results to the 
original DMD method. Additionally, the θ -DMD is still capable of recovering relevant flow features from non–uniformly 
sampled databases, whereas DMD cannot.

The rest of this paper is organized as follows: Section 2 introduces the θ -DMD method. Next, Section 3 introduces the 
testcases considered, describes the results obtained and assesses thoroughly the performance of the θ -DMD method in 
comparison with the DMD method when confronted with non–uniformly sampled datasets. Finally, Section 4 presents the 
conclusions of this contribution.

2. Methodology

2.1. The DMD technique

In this work we consider Dynamic Mode Decomposition (DMD) methods as data-driven feature extraction techniques. 
These techniques analyse the state evolution of a dynamical system in time, under the assumption of a linear relationship 
between consecutive system states (the snapshots). Consider the general non-linear dynamical system in discrete time, given 
by:

v j+1 = G
(
v j

)
with j = 0,1,2, . . . (1)

and its linearized counterpart around the state v0:

u j+1 = Ad u j with j = 0,1,2, . . . , (2)

where Ad can be interpreted as a state transition matrix [16].
Classical DMD algorithms (among others, [11,35,40,41]) attempt to approximate the previous relationship without con-

structing explicitly the linear operator Ad . Consider a sequence of np -dimensional instantaneous states (e.g., flow fields) 
indexed from 1 to ns , which can be arranged as a data matrix:

Uns
1 = [

u1, u2, . . . , uns−1, uns

] ∈Rnp×ns . (3)

The subindex and superindex identify, respectively, the first and last time instants of the sequence. The data is ordered in 
time, and separated by a constant sampling time interval �ts such that: t j+1 = t j + �ts for all j = 1, . . . , ns − 1.

The DMD techniques considered in this work follow [33], and thus depart from the factorization of the input data matrix 
Uns using the (economy–sized) Singular Value Decomposition (SVD) technique:
1
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Uns
1

S V D= L0 S0 RT
0 =

min(np ,ns)∑
j=1

σ j l0, j · rT
0, j. (4)

Matrix S0 contains as diagonal entries the non–negative and decreasing singular values σ0, j , whereas the real matrices 
L0 and R0, which are orthogonal, have as their columns l0, j and r0, j the left and right singular vectors.

Since l0, j ∈ Rnp , matrix L0 is related to the spatial dimension of the dataset and thus L0 is sometimes referred as the 
topos matrix. In the same manner, r0, j ∈Rns , and thus related to the temporal dimension; matrix R0 is called accordingly the 
chronos matrix. Typical flow applications, be they numerical or experimental, lead to data matrices with ns � np , termed 
Tall & Skinny (TS) matrices.

Thanks to the optimality properties of SVD, it is possible to obtain rank r0 reduced approximations to the data set simply 
by choosing r0 ≤ min(np, ns).

In this work we consider the DMD algorithm in [11], but applied to the reduced scaled chronos matrix Cns
1 ≡ Ŝ0 R̂T

0 =
r0∑

j=1
σ0, j e j · rT

0, j , where e j is the j-th unit vector in Rr0 . The partial subsequences X ≡ Cns−1
1 and Y ≡ Cns

2 are built, and the 

following linear relationship is presumed:

Y = Ad X. (5)

Next, the economy-sized Singular Value Decomposition (SVD) of the first subsequence is performed:

X
S V D= L1 S1 R1

T . (6)

The same remarks on non-negativity, orthogonality and optimality of reduced representions (X =
r1∑

j=1
σ1, je j · rT

1, j) apply as 

before.
Using the SVD of the X matrix into Eq. (5) allows to build a reduced matrix Ã, defined as:

Ã ≡ LT
1 Ad L1 = LT

1 Y R1 �−1
1 . (7)

The reduced matrix Ã is the projection of the matrix Ad onto the space linearly generated by the columns of L1 [11]. The
DMD method operates under the assumption that the projected matrix Ã conveys most of the information codified into 
operator Ad .

Once the reduced matrix Ã has been calculated, its (right) eigenvalue decomposition:

Ã � = � �μ, (8)

offers the reduced DMD modes ψ i as the columns of �; the corresponding eigenvalues μi (the diagonal entries of �μ) 
indicate the temporal growth rates (Re(μi)) and angular pulsation (Im(μi)).

The projected eigenmodes (namely, the dynamic modes) of matrix Ad are recovered as � = L0 L1 �. Note also that the 
growth rates and frequencies in the complex half-plane can be recovered from the eigenvalues as:

λi = log(μi)/�ts. (9)

Finally, note that the DMD decomposition allows to reconstruct the original data sequence as:

v(t j) =
ns−1∑
i=1

αi φiμ
j
i . (10)

The expression above can be recast in matrix form as:

Uns−1
1 = �Dα Vμ, (11)

where Vμ is a Vandermonde matrix whose columns are generated by the successive powers of the column vector [
μ

j
1, . . . ,μ

j
ns−1

]T
, with j = 0, . . . , ns − 1; and Dα is a diagonal matrix whose non-zero entries are to be determined. In 

this contribution, the amplitudes αi are computed, following [40], from the minimization problem in the Frobenius norm:

min‖Uns−1
1 − �Dα Vμ‖2

F . (12)

αi

3
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2.2. The θ -DMD technique

Alternatively, one might consider the generic non-linear dynamical system in continuous time:

v̇ = F (v) . (13)

Linearizing the expression above around the state v0 leads to the following system of ordinary differential equations:

u̇ = Ac u, (14)

where Ac is the Jacobian ∂F
∂v (v0).

Note that the exact solution to Eq. (14) is [42,16]:

u(t) = eA
c t u(0), (15)

which for two successive snapshots u j , u j+1 reads:

u j+1 = eA
c � ts︸ ︷︷ ︸
Ad

u j. (16)

As for the relationship between the eigenvectors of matrix Ac and those of its exponential, a linear algebra theorem [43]
guarantees that both coincide if Ac is diagonalizable.

We consider now the finite-difference discretization of Equation (14). The derivative term is discretized using forward 
Euler, whereas a θ -method is applied to the right-hand side. These two choices lead to the following relationship:

u j+1 − u j

� ts
j

= Ac [
(1 − θ) u j + θ u j+1

]
with j = 1, . . . ,ns − 1. (17)

Note how we are not assuming a constant sampling time in this case, and hence �ts
j ≡ t j+1 − t j for all j = 1, . . . , ns − 1.

The relation given by Eq. (17) applies also to the reduced snapshots, i.e. the columns of Cns
1 :

c j+1 − c j

� ts
j

= Ac [
(1 − θ) c j + θ c j+1

]
with j = 1, . . . ,ns − 1. (18)

Equation (18) can be arranged as:(
I − θ � ts

jA
c
)

︸ ︷︷ ︸
P

c j+1 =
(

I + (1 − θ)� ts
jA

c
)

︸ ︷︷ ︸
Q

c j, (19)

or, in matrix form P Cns
2 = Q Cns−1

1 .
The matrix inversion required by Eq. (19) above can be avoided if we consider the alternative formulation:

Cns
1 Mδ = Ac Cns

1 Mθ , (20)

where matrices Mδ, Mθ ∈Rns×(ns−1) are defined as:

Mδ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
� t1

0 . . . . . . 0 0
1

� t1

−1
� t2

. . . . . . 0 0

0 1
� t2

. . . . . . 0 0

0 0 . . . . . . 0 0

0 0 . . . . . . −1
� tns−1

0

0 0 . . . . . . 1
� tns−1

−1
� tns

0 0 . . . . . . 0 1
� tns

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Mθ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θ 0 . . . . . . 0 0
1 − θ θ . . . . . . 0 0

0 1 − θ . . . . . . 0 0
0 0 . . . . . . 0 0
0 0 . . . . . . θ 0
0 0 . . . . . . 1 − θ θ

0 0 . . . . . . 0 1 − θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Defining X ≡ Cns
1 Mθ and Y ≡ Cns

1 Mδ allows to rewrite Eq. (20) simply as:

Y = Ac X. (21)

From here on, application of the DMD technique in section 2.1 allows to retrieve dynamically relevant information 
about the system. We term this novel approach, capable of handling non–uniformly sampled state sequences, the θ -DMD
technique.
4
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Fig. 1. Synthetic dataset: in 1a, temporal samples are equiseparated; in 1b, temporal dimension sampled randomly according to a uniform U (0, 1) distribu-
tion. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

In the next section, we conduct a thorough assessment of the θ -DMD and its capabilities, in comparison with the 
baseline DMD algorithm.

Note that the θ -DMD approach in Eq. (21) is formally similar to the DMD technique in Equation (5). However, whereas 
Eq. (5) codes a direct relationship between consecutive system states, Eq. (21) establishes an input-output relationship 
between a weighted average of consecutive states and its difference [41,16].

Finally, the θ -DMD approach in Eq. (21) leads to a minor adjustment regarding the reconstruction step in Eq. (11): a 
factorization relationship X = � Dα Vμ still holds, but now λi = μi ; and matrix Vμ is not a Vandermonde matrix, but a 
circulant matrix given as:

Vμ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp(μ1 t1) exp(μ1 t2)
...

... exp(μ1 tns−1)

exp(μ2 t1) exp(μ2 t2)
...

... exp(μ2 tns−1)
...

...
...

...
...

...
...

...
...

...

exp(μns t1) exp(μns t2)
...

... exp(μns tns−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

3. Results

As we discussed in Section 2, the goal of this work is to assess the capabilities of the θ -DMD method regarding the 
identification of flow features from non–uniformly sampled temporal sequences. In order to obtain conclusions that are as 
informative as possible, we have considered three testcases, encompassing different flow regimes [44].

The first testcase pertains to a one-dimensional field with spatio-temporal dependence. Despite its simplicity, this flow 
is very useful nevertheless, as it allows to calibrate the parameter θ .

The second testcase is the ReD = 60 flow field around the mid-section of a very long cylinder. This flow is laminar, 
but the fact that ReD > ReD,c ≈ 45 makes this problem rich enough to study with DMD/θ -DMD.

Finally, the Reτ = 200 turbulent channel flow field along two indefinitely long plates is considered. The multiscale nature 
of the problem makes it a challenging test for both the DMD and theθ -DMD techniques.

All the computations described have been performed on a computer equipped with an 4-core Intel(R) Core(T M) i5-
3570K CPU at 3.40 GHz, a cache memory of 6144 kB and 8.0 GB of RAM.

3.1. Results – synthetic dataset

As the first testcase, we consider a synthetic field given by Equation (23).

u(x, t) = us(1 + ξ)sin(2πκsx − ωst) exp(σst + γsx). (23)
5
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Fig. 2. Synthetic dataset: singular values.

Fig. 3. Synthetic dataset: effect of parameter θ ∈ (0.1) in the accuracy of the results. In 3a, for uniformly sampled database; in 3b, for non-equiseparated 
(randomly sampled) database.

This toy model is one-dimensional, presents both spatial and temporal variations and has been already investigated 
in references [22,38,44]. Following Reference [38], we consider angular pulsation ωs = 20 and temporal growth rate σs =
0.75. The initial amplitude us , the wavenumber κs and the spatial growth rate γs are all set to 1; white multiplicative 
noise ξ ∼ U ([−1, 1]) is considered, with a Noise to Signal Ratio (N S R = max |ξ/us|) up to 5%. The spatio-temporal domain 
is discretized with np = 2000 equispaced points in [0, 2], whereas two different temporal discretizations for the interval 
[0, 1] are considered: a) on the one hand, ns ∈ [61, 2001] equiseparated temporal samples (see Fig. 1a); b) on the other 
hand, n′

s ∈ [61, 2001) temporal samples taken at instants that follow a uniform U (0, 1) distribution are considered (see 
Fig. 1b).

We begin by investigating to which extent can the θ -DMD method identify the correct ωs and σs , be it from the 
uniformly sampled or from the non–equiseparated in time datasets. According to Fig. 2, a rank 2 SVD reconstruction is 
6
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Fig. 4. Synthetic dataset: the effect of random temporal subsampling and noise level for DMD and θ -DMD analyses, using np = 2000. Figs. 5a and 5b, clean 
dataset |ξ | = 0; Figs. 5c and 5d, perturbed dataset with |ξ | = 5e − 2.

adequate for this dataset. Fig. 3 shows the accuracy of the θ -DMD method for different values of the parameter θ , using 
as metrics the errors εω = |ωθ −ωs ||ωs| and εσ = |σθ −σs ||σs | . First, errors εσ are systematically larger than εω , a behaviour already 
observed in [38,44]. It is also evident the noticeable error decrease as θ → 0.5, consistent with the increased order of 
accuracy associated to a Crank-Nicolson temporal discretization. In view of these results, we will consider θ = 0.5 for the 
rest of our study.

Figs. 4 and 5 investigate the influence of n′
s (the randomly decimated dataset length) and the noise level on the results 

obtained by classical DMD and θ -DMD methods. Figs. 4a and 4b present the errors in growth rate and frequency, for a 
clean dataset (|ξ | = 0, see Eq. (23)); Figs. 4c and 4d show the same errors but for the dataset perturbed by noise with 
|ξ | = 5e − 2. Irrespective of the level of noise, if the number of temporal samples is large enough, both classical DMD and 
θ -DMD attain low error in the identification of the growth and frequency. As n′

s decreases, the errors arise progressively; 
typically, the error of the θ -DMD is lower than that of the DMD. In the noise–free case, over the range n′

s/ns ∈ (0.05, 0.25), 
θ -DMD outperforms largely DMD in the identification of the growth rate; in the noise–contaminated case, θ -DMD shows 
acceptable results up to 0.083 (i.e., n′

s = 61) Finally, whenever n′
s/ns is very low, neither of the methods offer acceptable 

error levels. The behaviour reported so far is independent of the np considered, see Fig. 5, which repeats the experiment 
using np = 60.

To conclude, let us compare the reconstruction offered by the DMD and θ -DMD methods for both uniformly and non–
uniformly sampled versions of the database for the challenging n′

s = 61 case. The contraposition of Figs. 6a and 6b shows 
that, as long as the data samples are temporally equiseparated, no appreciable differences in the reconstruction are dis-
cernible.
7
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Fig. 5. Synthetic dataset: the effect of random temporal subsampling and noise level for DMD and θ -DMD analyses, using np = 60. Figs. 5a and 5b, clean 
dataset |ξ | = 0; Figs. 5c and 5d, perturbed dataset with |ξ | = 5e − 2.

The situation changes dramatically when non-equiseparated samples are considered, see Figs. 6c-6d. As seen in Fig. 6c, 
the reconstruction step using DMD is compromised when not equiseparated temporal samples are used. The results for 
θ -DMD appear in Fig. 6d: the reconstruction accuracy is remarkable (even for this low n′

s). The observations made so 
far (namely, that DMD and θ -DMD show a comparable behaviour on temporally equiseparated datasets; and that θ -DMD
outperforms DMD method for non-equiseparated snapshots) extend to the increasingly complex datasets analysed in the 
rest of the manuscript.

3.2. Results – ReD = 60 cylinder flow dataset

The 2D flow around the cross-section of an infinitely long cylinder is a classical configuration, extensively used as valida-
tion testcase, see e.g. [15,45,44]. This flow presents a Hopf bifurcation occurring at ReD ≈ 46; conditions slightly above this 
critical value are interesting: the flow behaviour, despite being laminar, includes unsteady vortex shedding.

In this work, following [45,44], we focus on a ReD = 60 flow. The flow is periodic, with dominant frequency ω ≈ 56.55. 
This corresponds to a Strouhal number of St = 0.137, which is consistent with the correlations in [46].

We consider the dataset generated in [44], consisting of ns = 800 temporally equiseparated velocity snapshots. The 
sampling time is �t = 0.0025, and the grid employed has np = 36, 474 points. Since only the horizontal velocity component 
ux is included in the study, the dataset can be arranged as a np × ns matrix.

The comparison of both the DMD and the θ -DMD methods has been accomplished in two phases. First, the complete 
dataset (i.e., ns = 800 snapshots) has been analysed with DMD and θ -DMD. The results of these analyses are summarized in 
8



Fig. 6. Synthetic dataset, reconstructed using Eq. (11): in Figs. 6a-6c, results for DMD; in Figs. 6b-6d, results for θ -DMD. Figs. 6a-6b, shows results for 
uniformly sampled time; Figs. 6c-6d, shows results for non–uniformly sampled time.

Fig. 7 and Fig. 8. Fig. 7a shows the non-dimensionalized singular values of the dataset. Notice the fast decay of the singular 
values, which is more apparent in Fig. 7c. This fast decay is consistent with the highly organized nature of the flow, which 
is laminar. Also, Fig. 7c suggests taking rank r0 = 20 in Eq. (4). Fig. 7e shows the non-dimensionalized amplitudes that both 
the DMD and the θ -DMD methods identify using rank r1 = 7. We observe that the larger amplitude coincides with the 
mode representing the average; also, both methods identify modes at the same frequencies.

Fig. 8 shows the spatial structure of the oscillatory modes retrieved by DMD and θ -DMD. The modes have very close 
frequency and growth rate, and are visually indistinguishable from each other. This supports the statement that, as long as 
the dataset is uniformly sampled in time, DMD and θ -DMD will provide comparable results.

The second phase of our study consists in analysing a reduced version of the cylinder dataset. This time, n′
s = 200

snapshots are randomly chosen from the original dataset, which implies that the snapshots are not temporally equiseparated 
anymore. Recall that DMD requires a fixed � t in order to convert from the discrete to the continuous eigenvalues in Eq. (9). 
In that case, we use the averaged temporal separation � t . Before discussing the results, let us note in advance that, once 
we break the temporal equiseparation assumption, we do not expect the baseline DMD algorithm to provide reasonable 
results anymore. If we show the DMD results is because they are informative in comparison with θ -DMD results.

The results from this second phase of the study are summarized by Figs. 7 and 9. Fig. 7b shows the non-dimensionalized 
singular values of the dataset. The singular values present again a fast decay, which can be seen better in Fig. 7d. Also, 
Fig. 7d suggests taking rank r0 = 7 in Eq. (4). Finally, Fig. 7f shows the non-dimensionalized amplitudes that both the DMD
and the θ -DMD methods (rank r1 = 7) identify. The frequencies identified by the θ -DMD method match relatively well 
the dominant frequencies retrieved from the original dataset (with errors ε < 5%), whereas the frequencies identified by
DMD are partly wrong: the higher frequency mode is not retrieved anymore, whereas a mode appears at an intermediate 
frequency ≈ 94. Fig. 9 shows the spatial structures of the modes. The comparison of the pairs Fig. 8b-9b, Fig. 8d-9d and 
Fig. 8f-9f shows the noticeable similitude from the θ -DMD modes obtained from both data sequences. Finally, the DMD
B. Li, J. Garicano-Mena and E. Valero Journal of Computational Physics 468 (2022) 111495
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Fig. 7. ReD = 60 dataset: DMD and θ -DMD analyses on two temporal sequences. Results for the complete (ns = 800 snapshots) sequence in Figs. 7a, 7c and 
7e; results for a subsequence built by randomly selecting n′

s = 200 snapshots from the original sequence in Figs. 7b, 7d and 7f.
10
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Fig. 8. ReD = 60 dataset: modes obtained for the complete ns = 800 snapshots sequence. Baseline DMD results in 8a, 8c, 8e; θ -DMD modes in 8b, 8d, 8f.

mode at frequency ≈ 120 shows an asymmetric spatial structure, whereas the mode at the intermediate frequency ≈ 94
presents the structure resembling the mode in Fig. 8c.

3.3. Results – Reτ = 200 turbulent channel flow dataset

We finally compare the performance of the DMD and the θ -DMD methods when applied to a turbulent channel flow 
database with Reτ ≈ 200 [47].

The channel flow here considered has been generated using the incompressible DNS solver described in [48]. The code 
solves for the wall-normal components of velocity v and vorticity η. These quantities are Fourier-transformed (dealiased 
using the 2/3 rule) along the homogeneous directions, and discretized using explicit compact finite-differences along the 
wall normal direction. The streamwise u and spanwise w velocity components are both retrieved using the continuity 
equation with the relation η = ∂ w

∂x − ∂u
∂z . Time integration is achieved by an explicit third order, low-storage Runge–Kutta 

method combined with an implicit second–order Crank–Nicolson scheme for the non–linear terms. The simulation has been 
conducted under the assumption of constant flow rate. The database characteristics are summarized in Table 1. In total, 
1200 flow snapshots were stored, separated in time by �ts = 0.156.

The turbulent database allows to identify an statistically converged averaged solution �U (y). For our study we consider 
the temporal sequence formed by the perturbation velocity vectors �u′ (x, y, z, t j

) = �u (
x, y, z, t j

) − �U (y). As discussed in 
11



Fig. 9. ReD = 60 dataset: modes obtained from a subsequence built by randomly selecting n′
s = 200 snapshots from the original sequence. Baseline DMD

results in 9a, 9c, 9e; θ -DMD modes in 9b, 9d, 9f.

Table 1
Reτ = 200 turbulent channel flow: database characteristics.

Lx/δ L y/δ Lz/δ Rec uτ nx ny nz �ts

π 2 π/2 3678.7 0.042 96 101 96 0.156

[30], a simplified database that still represents the turbulent physics is obtained by removing every other point along the 
homogeneous x and z directions and retaining only either the region corresponding to y+ < 50 from the lower half of the 
domain. The resulting database can be recast as a np × ns matrix, with np = 117, 504 and ns = 1200; This dataset is large 
enough to pose a tough challenge for most workstations. Techniques to accomplish the SVD/DMD decompositions of such 
databases are discussed in [20,30,44].

The comparison of the DMD and the θ -DMD methods is organized again in two steps: first, DMD and θ -DMD have been 
applied both to the complete dataset (i.e., ns = 1200 snapshots). The results of this comparison are summarized in Fig. 10
and Fig. 11.

Fig. 10a shows the non-dimensionalized singular values of the complete dataset. In this case, the decay of the singular 
values is much slower than in the other cases considered. This behaviour reflects the complex nature of the turbulent 
B. Li, J. Garicano-Mena and E. Valero Journal of Computational Physics 468 (2022) 111495
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Fig. 10. Reτ = 200 dataset: DMD and θ -DMD analyses on two temporal sequences. Results for the complete (ns = 1200 snapshots) sequence in Figs. 10a, 
10c and 10e; results for a subsequence built by randomly selecting n′

s = 300 snapshots from the original sequence in Figs. 10b, 10d and 10f.
13
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Fig. 11. Reτ = 200 dataset: modes obtained for the complete ns = 1200 snapshots sequence. Baseline DMD results in 11a, 11c, 11e; θ -DMD modes in 11b, 
11d, 11f. Note that modes in 11c and 11d, and in 11e and 11f, are in phase opposition.

channel flow, a statistically stationary phenomenon involving multiple temporal and spatial interacting scales. In view of 
Fig. 10c, we take r0 = 44 in Eq. (4).

Fig. 10e compares the non-dimensionalized amplitudes identified by DMDand θ -DMD using rank r1 = 23. Again, both 
methods identify modes at the same frequencies.

Fig. 11 shows the near wall (y+ ≈ 15) spatial structure of the oscillatory modes retrieved. Once again, the modes have 
very close frequency and growth rate, and are practically indistinguishable from each other. This confirms that DMD and 
θ -DMD identify the same modes as long as the dataset is uniformly sampled in time.

The second analysis step considers a reduced version of the dataset obtained by randomly choosing n′
s = 300 snapshots. 

Only the θ -DMD method is applied this time, since –cf. section 3.2– DMD modes on non–uniformly sampled datasets cannot 
be trusted.

The results from this second phase of the study are summarized by Figs. 10 and 12. Fig. 10b shows the non-
dimensionalized singular values of the dataset, which again decay progressively, see also Fig. 10d.

Finally, Fig. 10f shows the non-dimensionalized amplitudes identified by θ -DMD (ranks r0 = 40 and r1 = 11) from the 
non-uniformly sampled subsequence in comparison with the amplitudes obtained by the DMD and θ -DMD methods on the 
complete ns = 1200 data sequence. We observe how θ -DMD identifies the same modes captured by either method applied 
to the original dataset.

Fig. 12 shows the spatial structures of the modes obtained from the non–uniformly sampled n′
s = 300 dataset. The 

comparison of the pairs Fig. 11b-12a, Fig. 11d-12b and Fig. 11f-12c shows the noticeable similitude between θ -DMD modes 
obtained from both data sequences.
14
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Fig. 12. Reτ = 200 dataset: θ -DMD modes obtained from a subsequence built by randomly selecting n′
s = 300 snapshots from the original sequence.

4. Conclusions

In this work we have proposed a novel Dynamic Mode Decomposition (DMD) technique capable of handling non–
uniformly sampled data. As it is usual in DMD analysis, a linear relationship between consecutive snapshots is made. 
However, the technique here proposed differs from established DMD methods on two major aspects: first, the linear re-
lationship assumption is established on the numerically discretized counterpart of a linearized state-equation; and second, 
a dimensionally–reduced view of the state data is considered.

The data matrix dimensionality reduction is accomplished by simply exploiting the optimality properties of the SVD
technique. In this work we have resorted to standard (lapack) SVD, but nothing prevents to resort to other implemen-
tations, e.g. memory distributed SVD based on the TSQR algorithm [20]. Alternative methods could be considered to 
conduct the spatial dimension reduction, e.g. the variational autoencoders/convolutional neural networks approach sug-
gested in [49].

The performance of the new method, which we term θ -DMD, is assessed on three different, increasingly complex 
datasets: a synthetic flow field, a toy model consisting on a one-dimensional both temporally and spatially unstable; a 
ReD = 60 flow around a cylinder cross section, laminar but presenting unsteady periodic vortex shedding, and a Reτ = 200
turbulent channel flow, a complex flow presenting multiple spatio-temporal interacting scales.
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For the three datasets considered, whenever the dataset is uniformly sampled, the θ -DMD method systematically pro-
vides comparable results to the original DMD method.

Additionally, the θ -DMD is still capable of recovering relevant flow features from non–uniformly (sub–)sampled 
databases, whereas (understandably) DMD cannot.

The tool here proposed opens the way to conduct DMD analyses for non–uniformly sampled data, and therefore might 
become useful e.g., when confronted with experimental datasets with missing data, or when facing numerical datasets gen-
erated using adaptive time-integration schemes.

Finally, the θ -DMD technique here presented is formulated by establishing a linear relationship between an input (X) 
and output (Y) matrices. These matrices are obtained by post–multiplying the reduced chronos matrix Cns

1 with matrices Mδ

and Mθ , respectively. Future work will explore whether alternative definitions for the Mδ , Mθ operators yield to alternative 
algorithms with improved properties.
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